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Using a generalization of the level statistics analysis of quantum disordered systems, we present an approach
able to extract automatically keywords in literary texts. Our approach takes into account not only the frequen-
cies of the words present in the text but also their spatial distribution along the text, and is based on the fact that
relevant words are significantly clustered �i.e., they self-attract each other�, while irrelevant words are distrib-
uted randomly in the text. Since a reference corpus is not needed, our approach is especially suitable for single
documents for which no a priori information is available. In addition, we show that our method works also in
generic symbolic sequences �continuous texts without spaces�, thus suggesting its general applicability.
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Statistical keyword extraction is a critical step in informa-
tion science, with multiple applications in text-mining and
information-retrieval systems �1�. Since Luhn �2� proposed
the analysis of frequency occurrences of words in the text as
a method for keyword extraction, many refinements have
been developed. With a few exceptions �3�, the basic prin-
ciple for keyword extraction is the comparison to a corpus of
documents taken as a reference. For a collection of docu-
ments, modern term-weighting schemes use the frequency of
a term in a document and the proportion of documents con-
taining that term �4�. Following a different approach, the
probabilistic model of information retrieval related the sig-
nificance of a term to its frequency fluctuations between
documents �5–7�. The frequency analysis approach to detect
keywords seems to work properly in this context.

However, a more general approach should try to detect
keywords in a single text without knowing a priori the sub-
ject of the text, i.e., without using a corpus of reference. The
applications of such an algorithm are clear: internet searches,
data mining, automatic classification of documents, etc. In
this case, the information provided by the frequency of a
word is not very useful, since there are no more texts to
compare. In addition, such frequency analysis is of little use
in a single document for two main reasons: �i� Two words
with very different relevance in the text can have a similar
frequency �see Fig. 1�. �ii� A randomization of the text pre-
serves the frequency values but destroys the information,
which must be also stored in the ordering of the words, and
not only in the words themselves. Thus, to detect keywords,
we propose the use of the spatial distribution of the words
along the text and not only their frequencies, in order to take
into account the structure of the text as well as its composi-
tion.

Inspired by the level statistics of quantum-disordered sys-
tems following the random matrix theory �8�, Ortuño et al.
�9� have shown that the spatial distribution of a relevant
word in a text is very different from that corresponding to a
nonrelevant word. In this approach, any of the occurrences of
a particular word is considered as an “energy level” ei within
an “energy spectrum” formed by all the occurrences of the
analyzed word within the text. The value of any energy level
ei is given simply by the position of the analyzed word in the

text. For example, in the sentence “A great scientist must be
a good teacher and a good researcher” the spectrum corre-
sponding to the word “a” is formed by three energy levels
�1,6,10�. Figure 1 shows an example of a real book.

Following the physics analogy, the nearest-neighbor spac-
ing distribution P�d� was used in �9� to characterize the spa-
tial distribution of a particular word, and to show the rela-
tionship between word clustering and word semantic
meaning. P�d� is obtained as the normalized histogram of the
sets of distances �or spacings� �d1 ,d2 , . . . ,dn� between con-
secutive occurrences of a word, with di=ei+1−ei. As seen in
Fig. 1, a nonrelevant word �as “but”� is placed at random
along the text, while a relevant word �as “Quixote”� appears
in the text forming clusters, and this difference is reflected in
their corresponding P�d� distributions. In the case of a rel-
evant word the energy levels attract each other, while for a
nonrelevant word, the energy levels are uncorrelated and
therefore distributed at random, so the higher the relevance
of a word, the larger the clustering �the attraction� and the
larger the deviation of P�d� from the random expectation.
The connection between word attraction �clustering� and rel-
evance comes from the fact that a relevant word is usually
the main subject on local contexts, and therefore it appears
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FIG. 1. Spectra of the words “Quixote” and “but” obtained in
the first 50 000 words of the book Don Quixote, by Miguel de
Cervantes. Both words have a similar frequency in the whole text
�around 2150�, and also in the part shown in the figure.
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more often in some areas and less frequently in others, giv-
ing rise to clusters.

We present here an approach to the problem of keyword
detection with does not need a corpus and which is based on
the principle that real keywords are clustered in the text �as
in �9��, but in addition we introduce the idea that the cluster-
ing must be statistically significant, i.e., not due to statistical
fluctuations. This is of fundamental importance when analyz-
ing any text, but is critical when analyzing short documents
�articles, etc.� where fluctuations are important since all the
words present a small frequency. As the statistical fluctua-
tions depend on the frequency of the corresponding word
�see below�, our approach combines both the information
provided by the clustering of the word �the spatial structure
along the text� and by its frequency. Furthermore, we extend
our approach to general symbolic sequences, where word
boundaries are not known. In particular, we model a generic
symbolic sequence �i.e., a chain of “letters” from a certain
“alphabet”� by an ordinary text without blank spaces be-
tween words. As we know a priori the correct hidden key-
words this allows us to test our method. We show that the
clustering �attraction� experienced by keywords is still ob-
servable in such a text, and therefore that real keywords can
be detected even when the “words” of the text are not
known.

To quantify the clustering �and thus the relevance� of a
word using a single parameter instead of the whole distribu-
tion P�d�, in �9� the parameter � was used defined as �
�s / �d�, with �d� being the average distance and s

=��d2�− �d�2 the standard deviation of P�d�. For a particular
word, � is the standard deviation of its normalized set of
distances 	d1 / �d� ,d2 / �d� , . . . ,dn / �d�
, i.e., distances given in
units of the mean distance, which allows the direct compari-
son of the � values obtained for words with different fre-
quency. The use of � to characterize P�d� is common in the
analysis of energy levels of quantum disordered systems
�10�. For these systems, when the energy levels are uncorre-
lated and behave randomly, the corresponding P�d� is the
Poisson distribution �8�, P�d�=e−d, for which �=1. Thus in
�9� the value expected for a nonrelevant word without clus-
tering and distributed randomly in a text was �=1, and the
larger �, the larger the clustering �and the relevance� of the
corresponding word. This approach proved to be fruitful and
later works used it to test keywords detection �11�.

However, the cluster-free �random� distribution P�d� is
Poissonian only for a continuous distance distribution, which
is valid for the energy levels, but not for the words, where
the distances are integers. The discrete counterpart of the
Poisson distribution is the geometric one:

Pgeo�d� = p�1 − p�d−1, �1�

where p=n /N is the probability of the word within the text,
n being the counts of the corresponding word and N the total
number of words in the text. Pgeo�d� is expected for a word
placed at random in a text. Examples of P�d� for words
distributed according to more complex models than the ran-
dom one can be found, for example, in �12,13�, but we have
observed that the geometric distribution is a very good model
to describe the behavior of unrelevant words, and therefore

we use it as our null hypothesis. For the geometric case,
�geo=�1− p since s=�1− p / p and �d�=1 / p, and the con-
tinuum case ��=1� is recovered when p→0. Thus, in the
discrete case, words with different p randomly placed in a
text would give a different clustering level � �see Fig. 2�a�,
inset�. To eliminate this effect, we define the clustering mea-
sure �nor as

�nor =
�

�geo
=

�

�1 − p
. �2�

To show that this correction is effective, in Fig. 2�a� we plot
the behavior of the average value of �nor for words with
different p in a simulation of random texts �14�: all the
curves collapse into a single one independently on p, show-
ing that the normalization works, and the expected value
�nor=1 is recovered in all cases �for large n�.

However, in �nor the influence of the word count n is not
considered, although it can be of critical importance. The
mean value ��nor� presents clear finite size effects �is biased�
�Fig. 2�a��. The strong n dependence also appears in the stan-
dard deviation of the distribution of �nor values �sd��nor��
and in the whole distribution P��nor� itself �Fig. 2�b��. As
expected, for small n the distribution P��nor� is wide, and the
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FIG. 2. �Color online� �a� ��nor� as a function of the word count
n for words with different p in a random text. The horizontal line is
the value �nor=1. Inset: the same, but for � instead of �nor. The
horizontal lines are the expected values �1− p. �b� The mean ��nor�
and the standard deviation sd��nor� of the probability distribution
P��nor� as a function of n obtained by simulation of random texts.
The solid lines correspond to fittings according to Eq. �3�. Inset:
P��nor� for three different n.
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probability of having by chance large �nor values is not neg-
ligible. As n increases, P��nor� becomes narrower and con-
sists essentially of a Gaussian peak centered at �nor=1: now,
the probability of having by chance large �nor values is very
small. As a consequence, this strong n dependence can be
crucial: since the statistical fluctuations �as measured by
sd��nor�� are much larger for small n, it is possible to obtain
a larger �nor for a rare word placed at random in a text than
for a more frequent real keyword. The rare random word
would be misidentified as a keyword.

To solve this problem we propose a new relevance mea-
sure which takes into account not only the clustering of the
word measured by �nor, but also its statistical significance
given the word counts n. To achieve this, we obtained first by
extensive simulation of random texts �14� the n dependence
�bias� of the mean value ��nor� and the standard deviation
sd��nor� of the distribution P��nor�, which are shown in Fig.
2�b�. Both functions are very well fitted in the whole n range
by

��nor� =
2n − 1

2n + 2
, sd��nor� =

1
�n�1 + 2.8n−0.865�

. �3�

Note how for large n, ��nor�→1 and sd��nor�→1 /�n, in
agreement with the central limit theorem.

As P��nor� tends to be Gaussian, we can design an appro-
priate relevance measure C: for a word with n counts and a
given �nor value, we define the measure C as

C��nor,n� �
�nor − ��nor��n�

sd��nor��n�
, �4�

i.e., C measures the deviation of �nor with respect to the
expected value in a random text ���nor��n�� in units of the
expected standard deviation �sd��nor��n��. Thus C is a
Z-score measure which depends on the frequency n of the
word considered, and combines the clustering of a word and
its frequency. To calculate C we use the numerical fittings of
Eq. �3�. C=0 indicates that the word appears at random, C
�0 that the word is clustered, and C�0 that the word repels
itself. In addition, two words with the same C value can have
different clustering �different �nor value�, but the same statis-
tical significance.

We used systematically C to analyze a large collection of
texts �15� �novels, poetry, scientific books�. C can be used in
two ways: �i� to rank the words according to their C values
and �ii� to rank the words according to their �nor values but
only for words with a C value larger than a threshold value
C0, which fixes the statistical significance considered. Both
approaches work extremely well for many texts in different
languages �16�.

The Origin of Species by Means of Natural Selection is a
good example to understand the effect of C: using �nor, for
the very relevant word “species” �n=1922� we have �nor
=1.905. In the �nor-ranking “species” appears in the 505th
place! Nevertheless, when using the C measure we find for
this word C=39.97, and in the C ranking it is in the 5th place
�after “sterility,” “hybrids,” “varieties,” and “instincts”�.

Next, we would like to extract keywords from symbolic
sequences, considered as a continuous chain of “letters”
without “spaces” separating them. Previous attempts in this
direction �17� were based on word frequencies and not on the
spatial structure of the text. Our underlying idea is that even
in a symbolic sequence the spatial distribution of relevant
“words” should be different of the irrelevant ones, and the
clustering approach can provide useful results.

To model generic symbolic sequences, we use standard,
literary texts in which all the spaces, punctuation marks, etc.,
have been removed, thus producing a continuous chain of
letters drawn from the alphabet 	a ,b , . . . ,z ,0 ,1 , . . . ,9
 �18�.
Since we know a priori the real keywords hidden in such
texts, this may be a good benchmark for our method. Our
approach works as follows: as true “words” are unknown, we
calculate the C measure �19� for all possible �-letter words,
where � is a small integer ��=2–35�. For each �, we rank
the � words by their C values. As the number of different �
words is immense �x�, with x the number of letters of the
alphabet�, keyword detection is a daunting task. Note that,
for a given �, any word contains many other words of
smaller � and is also part of words with larger �. In this way,
the putative words can be viewed as a direct acyclic graph
�DAG� �20�. DAGs are hierarchical treelike structures where
each child node can have various parent nodes. Parent nodes
are general words �shorter words, small �� while child nodes
are more specific words �larger words, large ��. For a given
�, each � word has two ��−1� parents �for example, the word
“energy” has “energ” and “nergy”� and 2x ��+1� children
�like “eenergy,” “energya,” etc.�. As expected, we observed

TABLE I. The first 20 “words” extracted from the book Rela-
tivity: The Special and General Theory, by A. Einstein, with spaces
and punctuation marks removed.

Word Counts �nor C

energy 23 4.29 19.10

theuniverse 20 3.84 15.76

erical 26 3.25 13.74

project 35 2.73 11.85

alongthe 17 2.92 10.28

econtinuum 23 2.70 10.04

thegravitationalfield 27 2.60 10.01

sphere 16 2.8 9.79

electron 13 2.92 9.54

geometry 31 2.45 9.54

theprincipleofrelativity 33 2.41 9.48

specific 11 2.91 9.11

theembankment 40 2.25 9.09

square 28 2.41 8.92

thetheoryofrelativity 32 2.31 8.78

velocityv 17 2.60 8.63

referencebody 56 2.01 8.50

materialpoint 12 2.69 8.29

thelorentztransformation 33 2.22 8.26

fourdimensional 26 2.33 8.25

LEVEL STATISTICS OF WORDS: FINDING KEYWORDS… PHYSICAL REVIEW E 79, 035102�R� �2009�

RAPID COMMUNICATIONS

035102-3



that words with semantic meaning and their parents are
strongly clustered, while irrelevant and common words are
randomly distributed.

For keyword extraction we use two principles: �i� for any
�, we apply a threshold for C to remove irrelevant words
which is taken as a percentile of the C distribution, usually a
p value �0.05�. And �ii� we explore the “lineages” of all
words �from short, “general” � words to larger, “specialized”
ones� to extract just the words with semantic meaning and
not any of their parents which might be also highly clustered.
The lineage of a word can easily be established by iteratively
detecting the child word with the highest C value. The result
of such an algorithm �21� for a famous book without spaces
and punctuation marks can be seen in Table I, and for other
books in �16�. It is remarkable that this algorithm, based on
the spatial attraction of the relevant words, when applied to a

text without spaces is not only able to detect real hidden
keywords, but also a combination of words or whole sen-
tences with plenty of meaning for the text considered, thus
supporting the validity of our approach.

In conclusion, our algorithm has proven to work properly
in a generic symbolic sequence, being thus potentially useful
when analyzing other specific symbolic sequences of inter-
est, as for example, spoken language, where only sentences
can be preceded and followed by silence but not the indi-
vidual words, or DNA sequences, where commaless codes
are the rule.
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